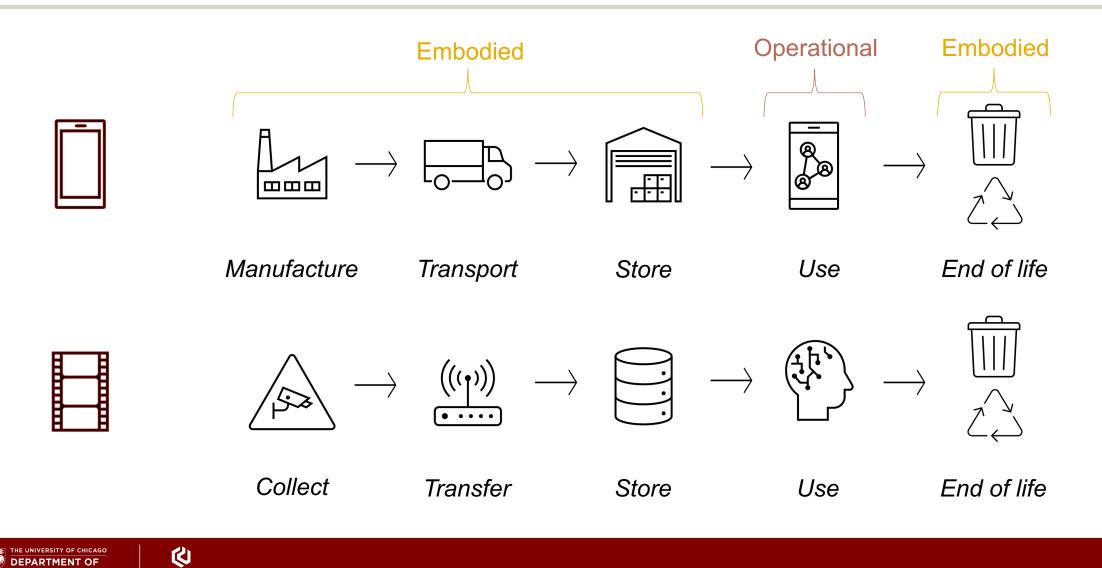
Toward a Life Cycle Assessment for the Carbon Footprint of Data

Gabriel Mersy and Sanjay Krishnan

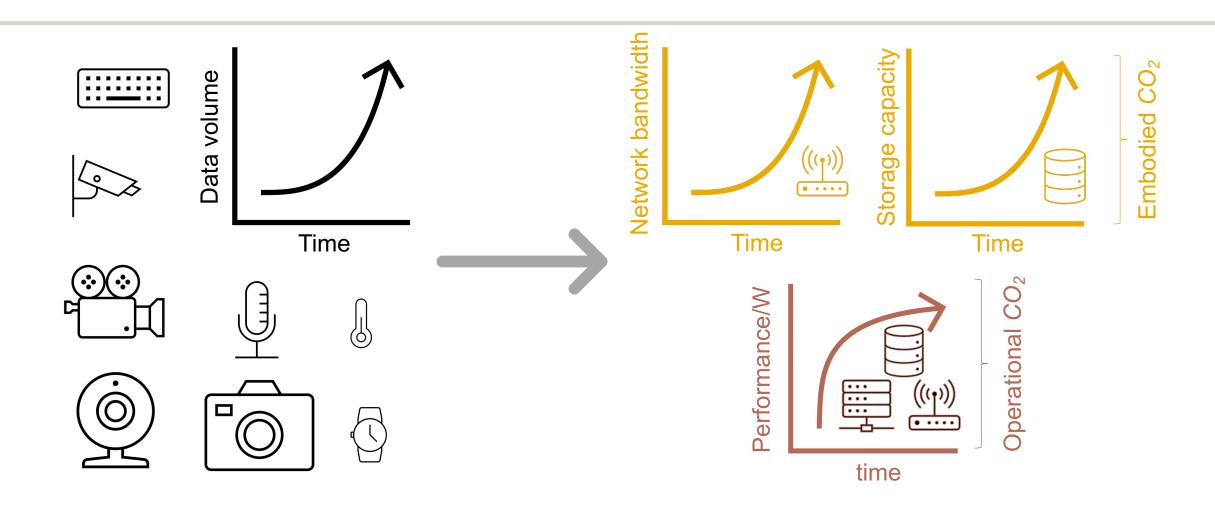
HotCarbon '23

Data as a good with a life cycle



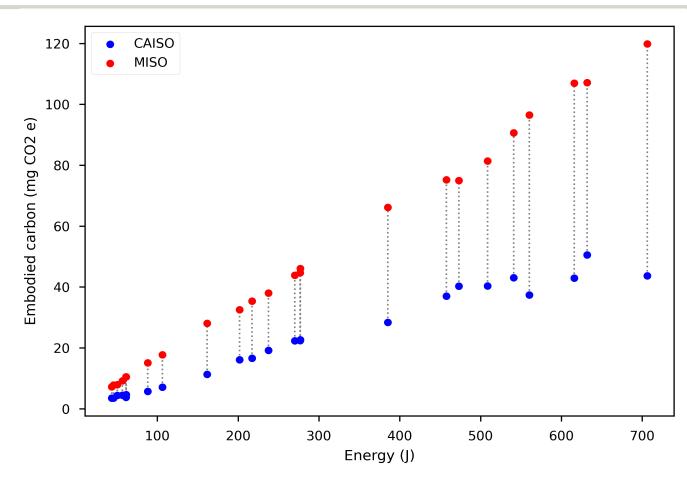
CHIDATA

Data sustainability: the hidden carbon costs



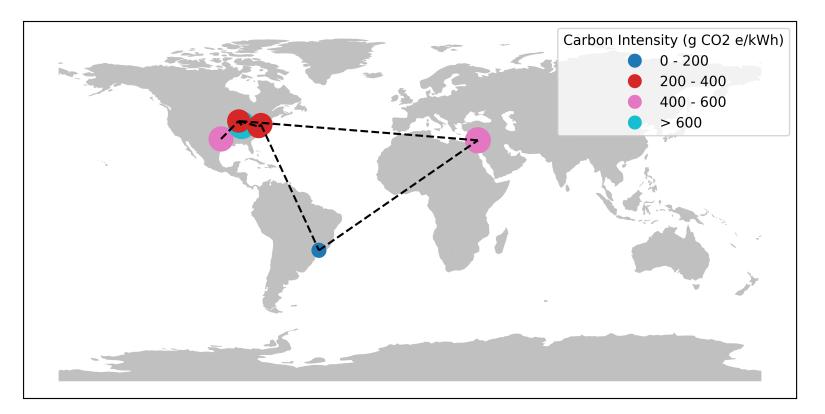
Ø

Data collection carbon costs are often overlooked



e.g., 26 second webcam video: 37 mg – 119 mg CO_2 e

Communication (also) matters



Core path to data center: 1.51 g CO₂ e/GB

Carbon provenance: tracking carbon costs across the data life cycle

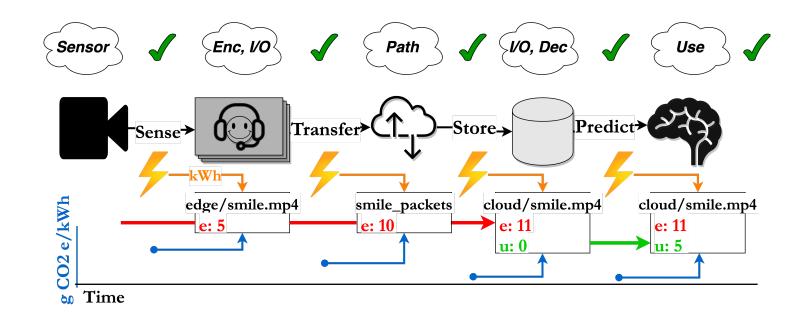
Carbon-responsive data: reducing carbon costs by approximating data

Carbon provenance: tracking carbon costs across the data life cycle

Carbon-responsive data: reducing carbon costs by approximating data

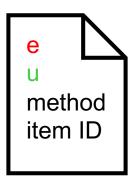
Carbon provenance: a carbon LCA for data

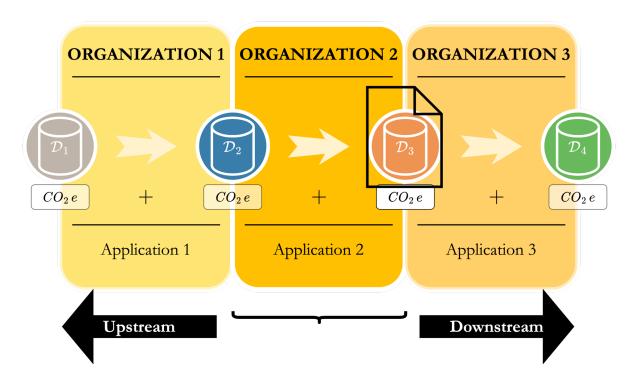
- Associate two annotations with each data item
 - Embodied (collection, transfer, storage)
 - Operational (use)



What about purchased data?

- Value chain accounting
- Goal: link carbon costs across entities when a data item is sold
- Idea: carbon header



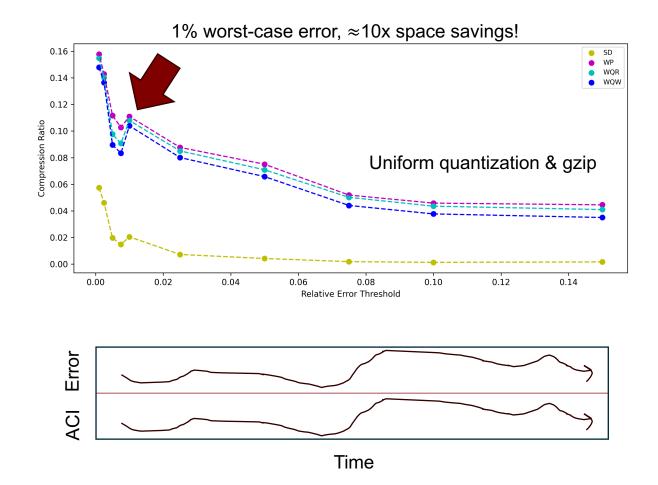


Carbon provenance: tracking carbon costs across the data life cycle

Carbon-responsive data: reducing carbon costs by approximating data

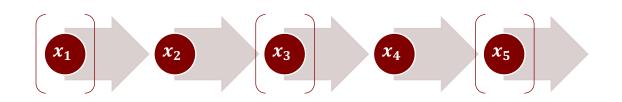
Approximation: a little error can go a long way

- Trade **error** for cost savings (e.g., **energy**, storage size, latency) in certain non-mission-critical use cases
 - Lossy compression: JPEG/H.264/MP3
 - AQP: sketching/sampling
 - ML: neural network pruning
- Dynamically use error to reduce carbon costs
 - No workload shifting necessary
- Required: an error policy



Carbon-adaptive data science

- Adapt error in certain DS workloads according to carbon intensity
 - Queries
 - ML inference
- Example: mean of a stream
- Error policy
 - High ACI \rightarrow sample 3/5 values
 - Low ACI \rightarrow use 5/5 values

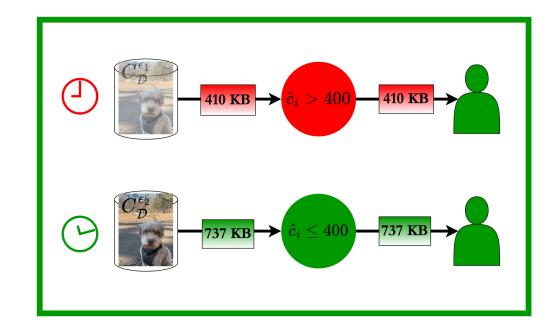


Carbon-adaptive compression

 Multiresolution compression [SIGMOD '23]: encoding that combines sub-encodings with different errors (& sizes)

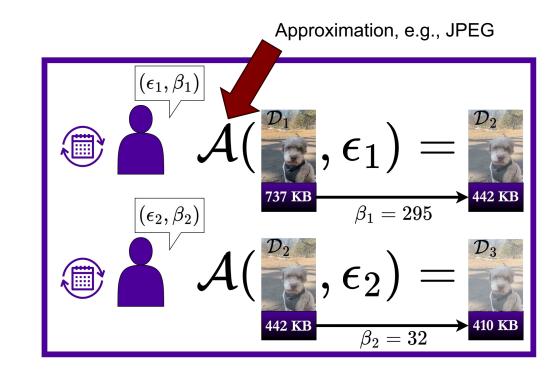
$$C_{\mathcal{D}} = C_{\mathcal{D}}^{\epsilon_1} \bigoplus C_{\mathcal{D}}^{\epsilon_2} \bigoplus \dots \bigoplus C_{\mathcal{D}}^{\epsilon_l}$$

• Error policy: choose sub-encoding according to path carbon intensity



Data wrinkles: lossy data aging

- More data \rightarrow more storage \rightarrow more manufacturing carbon
- Data disposal/fungi [Milo 2019, Kersten 2015]: policies to discard or reduce quality
- Q: What is the grey area between retention and deletion?
- A: recursively apply approximation operations over time
 - (ϵ, β) -data wrinkle: ϵ error, $\beta > 0$ space



仑

- Data sustainability: volume comes at a cost to the environment
- Carbon provenance: an LCA for data
 - Embodied and operational categories, just like hardware
- Carbon-responsive data: error can reduce carbon costs
 - Carbon-adaptive data science
 - Carbon-adaptive compression
 - Data wrinkles

Code:

https://github.com/gmersy/data-carbon

Email:

gmersy@uchicago.edu

Twitter:

@gabemersy

