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Data compression is a key technique for reducing the cost of data transfer from storage to compute nodes.

Increasingly, modern data scales necessitate lossy compression techniques, where exactness is sacrificed for a

smaller compressed representation. One challenge in lossy compression is that different applications may

have different accuracy demands. Today’s compression techniques struggle in this setting either forcing the

user to compress at the strictest accuracy demand, or to re-encode the data at multiple resolutions. This paper

proposes a simple, but effective multiresolution compression algorithm for time series data, where a single

encoding can effectively be decompressed at multiple output resolutions. There are a number of benefits over

current state-of-the-art techniques for time series compression. (1) The storage footprint of this encoding is

smaller than re-encoding the data at multiple resolutions. (2) Similarly, the compression latency is generally

smaller than re-encoding at multiple resolutions. (3) Finally, the decompression latency of our encoding is

significantly faster than single encodings at the strictest accuracy demand.
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1 INTRODUCTION
In today’s data analytics infrastructure, it is common for data storage to be separated from compu-

tational resources [2]. For example, very large datasets can be stored in a block storage system like

Amazon S3 and only transferred to compute nodes for analysis. Similarly, in edge computing, data

might reside on edge nodes for privacy or cost reasons and only be transferred to a central location

when needed [33, 47]. In such on-demand retrieval architectures, the time needed to transfer data

between storage and computation nodes is an important bottleneck, and data compression is one

of the main techniques for controlling the cost of data movement.

Traditionally, data compression approaches are divided into two categories: lossless and lossy. In

lossless compression, the data are compressed and decompressed without loss of any information.
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Examples of such approaches include dictionary coding for string compression [3, 16], GZip/BZip

for byte-sequence compression [39], and turbo-coding for integer compression [38]. In contrast,

lossy compression allows for minor errors in the reconstruction that would not affect a downstream

application. By nature, lossy compression is mostly aimed at high-dimensional quantitative data.

Examples include JPEG for images [43], H.264 for video [45], and a variety of techniques for

scientific data [7, 28, 41]. Lossy compression techniques sacrifice accuracy (the degree of errors in

the reconstruction) for storage size (the size of the compressed data).

To cope with ever growing datasets, lossy compression has been increasingly adopted in edge-

computing and sensing systems [33–35, 40, 47]. Data compression can be pushed towards the point

of data collection to save on downstream data transfer, storage, and computation. For example, a

visual dashboard monitoring a sensor only needs the data to be accurate up to the screen pixel

resolutions. On the other hand, machine learning models that consume the data are often robust to

small amounts of imprecision in the input features. While such “compression pushdown” can be

extremely effective, it is most useful when there is only a single downstream application consuming

the data.

Multiple downstream applications can have differing accuracy demands (e.g., a visual dashboard

requires a 1e-3 maximum error in all values, but the anomaly detection framework only requires

1e-1 precision). In such cases, the available pushdown strategies essentially are: (Strict Encoding)

encode the data once at the strictest accuracy demand, (Multiple Encoding) re-encode the data

at all of the different accuracy demands, and (Lazy Encoding) first encode and store the data at

the strictest accuracy demand, then at retrieval time decode the data and re-encode it at the error

target. The strict encoding strategy has the obvious drawback that it forces every application to pay

the same data transfer cost as the one with the strictest accuracy requirement. On the other hand,

the multiple encoding strategy allows different applications to selectively retrieve data encoded at

their particular accuracy demands. However, the multiple encoding strategy has a steep cost in

terms of compression latency or compression throughput (i.e., linear in the number of applications),

and local storage (i.e., stores one encoding per application). Finally, lazy encoding does not use as

much storage as the multiple encoding strategy and has a lower transfer cost than strict encoding.

However, the decompression process is significantly slower, since it requires re-encoding the data.

This paper navigates this impasse on time series data and studies efficient methods for supporting

multiple downstream consumers of lossy (or lossless) data. Ideally, it should be possible to store

a single encoding that can be selectively decompressed at all of the different resolutions and thus

mitigate the downsides of both strategies described above. We call this problem the multiresolution
compression problem, where the objective is to construct a single encoding of a time series that

can be decompressed at different cell-level error tolerances (hereafter called 𝐿∞ errors). While

related problems have been proposed in a number of adjacent areas such as in reduced-precision

ML [44] and approximate query processing [5, 29]; to the best of our knowledge, multiresolution

compression has not been extensively evaluated in the data compression literature. This problem

setting subtly changes the typical metrics of interest for data compression. An effective multireso-

lution compression algorithm: (Compression ratio) should require significantly less storage than a

separate encoding at each error tolerance; (Compression latency) should be significantly faster to

construct the encoding than a separate encoding at each error tolerance; (Decompression latency)

should be faster to decompress data for higher error tolerances. This means that a multiresolution

compression algorithmmight not be the most effective at any single error tolerance, but in aggregate

across multiple tolerances, it outperforms the strict and multiple encoding strategies.

This paper proposes an effective multiresolution compression algorithm, called Hierarchical

Residual Encoding (HIRE), for univariate and multivariate time series data. HIRE assumes a mini-

batch data acquisition model where data are streamed to the system in small blocks, and these blocks
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represent contiguous time-segments of collected data. HIRE constructs a synopsis data structure

through a recursion of partitioning and residualizing steps. The partitioning step approximates

a time series with a piecewise approximation, and the residualizing step calculates a signal that

represents the approximation error. This error signal can further be approximated at increasingly

finer granularities. We find that these residual signals are often highly compressible, since many

values may lie under the error threshold of the strictest application. To retrieve data at a particular

error threshold, we apply a simple summation of the preceding layers. This result is not surprising

as such residualizing operations are effective in time series forecasting [11], and in differential

equation solvers [22].

2 BACKGROUND
First, we will motivate the general problem statement and give context to our contributions in

multiresolution compression. Through this paper, we will consider the following running example.

Example 2.1 (Edge Data Storage and Retrieval). Data transfer over a network is one of the most

expensive (in terms of cost and energy) tasks in any distributed sensing application. Many recent

sensing architectures argue for lazy data retrieval [33], where data are persisted on the edge for

some period of time and only centralized if/when needed. Let’s consider a simplified two server

version of this architecture. Consider a sensor deployed at a climate research observatory that

collects a time series of numerical data. The data are compressed online at an “edge server” during

data collection (located at the observatory), and stored locally for a maximum of 10 days. The

compressed versions can be retrieved from the edge server, transferred to a remote server (e.g., at a

research university), and decompressed at the remote server.

2.1 Time Series Compression Basics
Let us consider a time series with observations:

𝑋 = [𝑥0, 𝑥1, . . . , 𝑥𝑇−1] .

For now, let us assume that each 𝑥𝑖 is a single floating point number (i.e., a univariate time series).

We will relax this assumption later, but it will be easier to understand the baselines in the univariate

case. A compression algorithm consists of an encoder and decoder pair

𝐶𝑋 = enc(𝑋 ) 𝑋 ′ = dec(𝐶𝑋 )

that produces a compressed representation of 𝑋 called 𝐶𝑋 and reconstructs an estimate of the

original time series 𝑋 ′ from 𝐶𝑋 . Without loss of generality, we can consider 𝐶𝑋 to be a vector

as well. There are several important metrics of interest that describe the performance of such a

compression algorithm:

• Compression Ratio. Let 𝐻 (·) denote the size in bits of a vector. The compression ratio is

defined as
𝐻 (𝐶𝑋 )
𝐻 (𝑋 ) . A lower compression ratio indicates better performance in terms of storage.

In our running example, the compression ratio directly affects how much data are transferred
from the edge to the remote server.
• Compression Latency. The compression latency of an algorithm is the time needed to

produce𝐶𝑋 from 𝑋 . In our running example, the compression latency affects the data collection
throughput of the edge server.
• Decompression Latency. The decompression latency of an algorithm is the time needed

to produce 𝑋 ′ from 𝐶𝑋 . In our running example, the decompression latency affects how much
extra time beyond data transfer is spent on the remote server.
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• Reconstruction Error. The difference between 𝑋 and 𝑋 ′ is called the reconstruction error,

for some measure of dissimilarity. In our running example, the reconstruction error measures
how different the data processed on the remote server is compared to the edge server.

While there are many such compression algorithms, we primarily focus on the ones with

deterministic 𝐿∞ reconstruction error guarantees. That is, we bound the maximum allowable error

of the reconstructed time series 𝑋 ′ = dec(enc(𝑋 )) with respect to the original time series 𝑋 by

specifying an error threshold parameter Y. The 𝐿∞ reconstruction error | |𝑋 − 𝑋 ′ | |∞ is defined as

the maximum absolute disagreement between 𝑋 and 𝑋 ′ at any time-step 𝑖:

𝐿∞ = | |𝑋 − 𝑋 ′ | |∞ = max

𝑖
|𝑥𝑖 − 𝑥 ′𝑖 |

We then enforce an error guarantee by ensuring that the 𝐿∞ error is within the pre-specified

threshold Y, which means | |𝑋 − 𝑋 ′ | |∞ ≤ Y. For example, Y may represent the maximum error that

the observatory is willing to tolerate in the reconstructed time series to avoid a negative impact on

subsequent weather forecasting tasks. We choose such guarantees because they are the strictest

and most compatible with a wide variety of applications. The main trade-off in most techniques is

when Y is increased (i.e., more error), the compression ratio decreases.

2.2 Compression with Bounded 𝐿∞ Error
There is an extensive body of literature on time series compression techniques (refer to survey [25]).

However, not all compression algorithms can provide 𝐿∞ error guarantees. For example, a spectral

approach like PCA, or an FFT, can only control the average error but not the worst-case error

for any given observation. For techniques that do provide 𝐿∞ error guarantees, they generally

follow the same design pattern composing three main components: (1) Quantization, (2) Temporal

Decorrelation, and (3) Byte Encoding.

2.2.1 Quantization. The most basic technique for compressing numerical data with an error

guarantee is quantization. Quantization is the process of rounding a floating point number to

nearest valid value of fixed precision. Even simple data quantization can be very effective and is

employed in Amazon Redshift [19]. Proceeding to the technical formulation of quantization, let us

suppose that 𝑥− , 𝑥+ are the minimum and maximum of 𝑋 respectively. Define 𝑅𝜖 to be the relative
𝐿∞ error, i.e., a desired error tolerance relative to the range of 𝑋 :

𝑅𝜖 =
Y

𝑥+ − 𝑥−

A uniform quantization scheme cuts the range [𝑥−, 𝑥+] into 1

𝑅𝜖
equal-sized buckets

1
. To encode a

dataset using this scheme, one sets each numerical value to its resident integer bucket (note that

the floor function discretizes the formerly continuous input):

enc(𝑥𝑖 ) =
⌊
(𝑥𝑖 − 𝑥−)
(𝑥+ − 𝑥−) ·

1

𝑅𝜖

⌋
(1)

We examine the quantization formula, we notice that the main term ⌊ (𝑥𝑖−𝑥
− )

(𝑥+−𝑥− ) ·
1

𝑅𝜖
⌋ is integer-

valued and ranges from 0 to ⌈ 1

𝑅𝜖
⌉. In its most basic implementation, we can assign a fixed-length

binary code to each of the integer values. This would result in storage size of log
2
⌈ 1

𝑅𝜖
⌉ per values.

To decode, one simply reverses the transformation:

𝑥 ′𝑖 = dec(enc(𝑥𝑖 )) = enc(𝑥𝑖 ) · 𝑅𝜖 · (𝑥+ − 𝑥−) + 𝑥− (2)

1
In the degenerate case of 𝜖 = 0 one just keeps each element of 𝑋 in its own bucket
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As long as we also store 𝑥+, 𝑥−, 𝑅𝜖 , we can translate the stored integer into its corresponding floating
point quantum. Unfortunately, regardless of whether quantization is applied to a column sampled

from a normal distribution or to a time series with high autocorrelation, it yields the same mapping.

2.2.2 Temporal Decorrelation. For this reason, either before or after quantization most time series

compression algorithms attempt to factor out all of the “predictable” terms, thereby only leaving

uncorrelated errors to be compressed. The simplest approach to accomplish this is delta-encoding,

which transforms a time series so that every value is represented as a successive difference from

the previous value:

𝑥𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖−1

This transformation is completely reversible with a left-to-right cumulative sum, so no information

is lost. Since time series often have highly similar values along the time axis, the range of delta

values is smaller in magnitude and variation than the original values. Thus, the deltas can often be

effectively stored with reduced precision.

We can think of delta-encoding as a simple form of “predictive” compression. The previous value

𝑥𝑖−1 can be interpreted as a simple model that predicts the value of its neighboring element [4].

The same trick would work for any function 𝑓 of the previous 𝑗 lagged elements:

𝑥𝛿𝑖 = 𝑥𝑖 − 𝑓 (𝑥𝑖−1, 𝑥𝑖−2, . . . , 𝑥𝑖− 𝑗 )
Given the dependence of the current value on the previous (lagged) values, the structure of delta

encoding is suitable for autoregressive models of any flavor. It is worth noting that the better the

predictive model, the more skewed the 𝑋𝛿 values will be towards zero. If the effective domain of

the numbers can be greatly reduced, then fewer bits can be used to represent 𝑋𝛿 .

In general, any time series modeling technique can be used to decorrelate the data. For example,

there are a number of piecewise approximations for time series that exploit trend structure in

a typical time series. Piecewise approaches decompose a time series into segments and use the

segments to approximate the time series such as in Piecewise Aggregate Approximation (PAA) [26]

and Piecewise Linear Approximation (PLA) [24]. Like delta encoding, we can think of piecewise

approximation as a simple model that predicts the next value. One only needs to store the model

and the compressed residual. If this model is accurate, the residual error is likely very sparse and

highly compressible.

2.2.3 Byte-Encoding. Finally, after quantization and decorrelation, general-purpose compression

algorithms can be used to simply translate the remaining data into a series of bytes and reduce

redundancy. Most of these approaches are based on run-length encoding or the LZ77 algorithm

that look for byte-level repetitions within sliding windows of data [39]. Generally speaking, byte-

oriented techniques are lossless—meaning that the 𝐿∞ error is always 0—so they can provide a

trivial error guarantee. In numerical data, the obvious limitation is that while two floating point

numbers may be close to each other numerically, there might not be a very strong similarity

between their binary representations leading to poor compression with an LZ77 technique. This is

why quantization and decorrelation are generally applied first to exploit the numerical structure.

2.3 The Multiresolution Problem
For any combination of quantization and decorrelation described above, the encoded representation

𝐶𝑋 is tied to a specific target error. Let us consider how this can cause an unnecessary performance

bottleneck in our running example.

Example 2.2 (Two Applications With Different Error Tolerances). Consider two remote applications

consuming the climate data collected at the observatory. The first application is a nightly report
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that is generated over all of the collected data. This report requires that every value processed is

no more than Y = 1𝑒 − 4 of the true value. The second application is a minute-by-minute anomaly

detector to detect whether the observatory has abnormal readings. This application is far more

tolerant to error and requires that each value processed is only within Y = 1𝑒 − 1 of the true value.

If we use the state of the art, there are three clear solutions—all of which have significant

drawbacks.

• Compress at the Strictest Tolerance. The most obvious approach would be to compress

the data at the strictest error tolerance. Unfortunately, this would mean that every retrieval

would pay a data transfer cost of the strictest threshold. In our running example, the frequent
anomaly detection tests would have to repeatedly transfer data encoded with a target of Y = 1𝑒−4

due to the relatively infrequent nightly reporting.
• Compress at All Tolerances. Another approach would be to encode the data at all relevant

error tolerances. While this approach allows each application to only transfer data encoded

at an appropriate error tolerance, it shifts the burden towards encoding. Each additional

error target would reduce the effective throughput available for data collection, since we are

compressing the data twice. In our running example, we would cut our ingestion capacity by
roughly a factor of two.
• Lazy Re-Encoding. A hybrid approach would be to first encode the data at the strictest

error tolerance, then at retrieval time decode the data and re-encode it at the error target of

each retrieving application. The core challenge is that decompression is often significantly

slower than compression in many popular algorithms, and this hybrid approach incurs these

costs at the edge. In our running example, the frequent anomaly detection tests would trigger
expensive re-encoding processes that would burden the edge server.

These drawbacks suggest the need for a new type of time series compression algorithm aimed at

supporting multiple downstream applications. Ideally, there should be a single encoding that can

be selectively decompressed at different target resolutions.

Definition 2.3 (Multiresolution Compression). A multiresolution compression algorithm produces

a single encoding 𝐶𝑋 that can be selectively decomposed into sub-encodings 𝐶
𝜖1

𝑋
, . . . , 𝐶

𝜖𝑙
𝑋

with

corresponding error thresholds 𝜖1, . . . , 𝜖𝑙 :

𝐶𝑋 = 𝐶
𝜖1

𝑋

⊕
𝐶

𝜖2

𝑋

⊕
. . .

⊕
𝐶

𝜖𝑙
𝑋

where

⊕
denotes some combination operation of the sub-encodings.

Decomposable encodings allow one to selectively transfer data for any target resolution. The

multiple encoding strategy described above can be thought of as a trivial case where

⊕
is simply

the concatenation operation over independent encodings of the data. The key issue with this

strategy is that no work is shared between any of the encodings, and effectively sharing work

will be the main premise of this paper. We will show that an additive decomposition, where

⊕
is

a linear combination operation, is a simple but effective solution. Consequently, the goal of this

paper is to investigate such algorithms, understand how to evaluate them, and how to optimize for

different performance objectives in the multiresolution setting.

3 MATHEMATICAL INTUITION
We will provide some basic technical intuition on how such an algorithm can be constructed.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 99. Publication date: May 2023.



Hierarchical Residual Encoding for Multiresolution Time Series Compression 99:7

3.1 Residualization
From the previous section, let 𝑋 be a time series and 𝑋 ′ be an approximation of it (e.g., a decoding

of a lossy encoding). The residual series is also a time series and is defined as:

𝑅 = 𝑋 − 𝑋 ′

which is the difference between the original series and its reconstruction. It clearly follows from

this definition that if one knows the approximation and the residual, one can fully reconstruct

the original series 𝑋 ′ + 𝑅 = 𝑋 . Such a decomposition of terms is called an additive decomposition

and is well-studied in modeling time-dependent phenomena outside of data compression [11].

For example, it is common to decompose time series into a trend component (which represents

the general trend of the series) and noise (which represents variation along the trend). The trend

component would be our 𝑋 ′ and the noise would be our 𝑅.

Additive decompositions are recursive in nature, since the residual 𝑅 is itself another time series

and can be further decomposed. Now, let us suppose that we have an approximation to 𝑅 denoted

𝑅′. We can similarly define a residual series 𝑆 = 𝑅 − 𝑅′. Through substitution, we can see that our

additive decomposition now looks like this:

𝑋 = 𝑋 ′ + 𝑅′ + 𝑆
This process can be repeated, further and further decomposing the residual, which yields a natural

recurrence equation:

𝑅0 = 𝑋 (3)

𝐴𝑖 = approx(𝑅𝑖 )
𝑅𝑖 = 𝑅𝑖−1 −𝐴𝑖−1

where approx(·) is some approximation function. We can clearly see from this equation that for 𝑘

such recursions:

𝑋 =

𝑘−1∑︁
𝑖=0

𝐴𝑖 + 𝑅𝑘

We leverage this basic intuition to construct an effective multiresolution compression algorithm.

Written in another way the equation above is simply

∑𝑘−1

𝑖=0
𝐴𝑖 ≈ 𝑋 . We need to construct a sequence

of successive approximations that reduces the size of the residual signal until the residual is less

than our desired error threshold.

3.2 Relevance to Time Series Compression
The next section will show how to leverage a series of successive refinements of the residual series

to represent the original series. At each step, we compress the residual vector from the previous

step, progressively increasing the fidelity of the compression. As more of the variation in the data is

explained by each subsequent step, the residual vector becomes smaller in magnitude and sparser.

Let us consider a concrete example. In Figure 1(A), we have plotted an example time series. One

can coarsely approximate this time series with a piecewise constant approximation of 3 segments

(Figure 1(B)). Between this approximation and the original series, there is a residual (Figure 1(C)).

This residual can be captured by another piecewise constant approximation with 6 segments (Figure

1(D)). As long as each subsequent approximation includes additional information (i.e., increasing

the number of segments), the remaining residual series reduces in magnitude. A summation of

these approximations gets closer to the original value (Figure 1(E)). While the intuition is simple,

realizing this idea turns out to be more difficult. The next section describes how we can enforce an

error guarantee in this process of successive refinement and how to implement such an approach

efficiently.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 99. Publication date: May 2023.
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Fig. 1. (A) Illustrates an example time series, (B) illustrates a coarse approximation of the time series, (C)
illustrates the residual series, (D) illustrates a finer approximation of the residual series, and (E) shows how
the summations of the residuals lead to progressively better approximations

3.3 Novelty
Our new compression method for recursively approximating a time series has some similarities

with other classical mathematical methods for approximating functions such as Fourier and Taylor.

For instance, a Taylor series can in fact provide an upper bound error for each distinct partial sum,

and the error decreases as the size of the partial sum grows. However, there are key differences in

our formulation because of how we refine our approximation and measure the resulting bounds.

In particular, in series approximation, error is only used to decide when to terminate the series

(i.e., a stopping condition), which is entirely different from how we recursively approximate the

error values themselves. We leverage the intuition that residuals often contain a sparser signal

than the function values. By recursively applying approximation to the residuals at increasingly

granularity, the resulting residual gets sparser (more blocks under the error threshold). This leads

to more long runs of 0 values and thus better compressibility. By setting the midrank function as

the pool function, we show that the 𝐿∞ error is strictly non-increasing with respect to the level of

the hierarchy, a similar theoretical guarantee to the Taylor series.

The novelty of our submission is therefore: i) a new problem definition highlighting the emerging

need for multiresolution (de)-compression systems, ii) hierarchical recursive approximation of

residual vectors in the domain of time series compression with 𝐿∞ guarantees—which has not been

proposed before, iii) the use of pool function properties along with vector theory to propose linear

time compression and decompression algorithms computing the errors on the fly, and iv) practical

implementation of the theoretical algorithms making use of vectorization and parallel computing.

4 HIERARCHICAL RESIDUAL ENCODING
Based on our intuition from the previous section, we design an algorithm that constructs a progres-

sively refined set of residual signals. This algorithm is called Hierarchical Residual Encoding (HIRE).

We describe our method considering a univariate time series. We can also handle multivariate time

series by running independent encodings.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 99. Publication date: May 2023.
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4.1 Algorithm Basics
Before we introduce the algorithm, it would be informative to define a few general building blocks.

As before, let 𝑋 = [𝑥0, 𝑥1, . . . , 𝑥𝑇−1] be a univariate time series represented as a vector of data,

where 𝑥𝑖 ∈ R and 𝑋 ∈ R𝑇 . We further assume that the user provides us with an error Y∗ or the
strictest error threshold that the encoding must guarantee.

4.1.1 Quantized Pooling. HIRE relies on a piecewise approximation of each residual series: over

disjoint windows, the value of the window is approximated by a single scalar aggregate. To use

machine learning terminology, this operation is called (temporal) pooling. Pooling reduces the

dimensionality of a data series along the time axis over a series of fixed-size windows. The pooling

operation is defined by two parameters, an aggregation function 𝑓 and a time series 𝑋 . In particular

let 𝑝 𝑓 (𝑋 ) : R𝑛 → R, 𝑝 𝑓 (𝑋 ) = 𝑓 (𝑥0, . . . , 𝑥𝑛−1), for any positive integer 𝑛 2
. In other words, a pool

function provides a concise estimate of a given time window with a single value. The choice of

pooling function is a hyper-parameter and different pooling functions have unique properties. We

can think of them as different ways of approximating the values in a time window. For a window

𝑋 = [𝑥0, . . . , 𝑥𝑛−1], we define:
• Mean: 𝑓 (𝑋 ) = 1

𝑛

∑
𝑖 𝑥𝑖 . The mean value is a natural pooling function that minimizes the

squared error with respect to the window.

• Midrank: 𝑓 (𝑋 ) = 1

2
(max𝑖 {𝑥𝑖 } −min𝑖 {𝑥𝑖 }). We can show that midrank is the optimum pool

function to minimize the 𝐿∞ error of the residual vector in each node of the hierarchy, as

described in the next subsection.

• Median: 𝑓 (𝑋 ) returns the median value of vector 𝑋 .

• Random: 𝑓 (𝑋 ) = 𝑥𝑖 with probability 1/𝑛. We can show that a random pooling function is

robust to seasonal variation within windows of a time series.

To efficiently store the results of a pooling operation, we further quantize the aggregate value

to a particular error threshold (using the process described in Section 2). Quantization ensures

that all of the pool values are integers, so more efficient compression methods can be used to

compress/decompress them. During the decompression we derive the pool values 𝑃 and transform

them to the corresponding real values before we take their sum. Care must be taken in how these

values are quantized, and Section 2.2.1 describes how to translate Y∗ into a quantization threshold.

4.1.2 Spline interpolation. Pooling is generally a lossy operation for 𝑛 > 1 and is only lossless for

𝑛 = 1 (i.e., window size of 1). Thus, inverting this operation will only give us an approximation of the

original series. To do so, we require some function that estimates the original time series from the

pooled values. We define a spline function 𝑠𝑤 (𝑝 𝑓 (𝑋 )) ≈ 𝑋 , where𝑤 = |𝑋 |. The user can choose the

spline function that they prefer. Our default option is a simple interpolation function that duplicates

the value 𝑝 𝑓 (𝑋 ),𝑤 times. In particular, 𝑠𝑤 (𝑝 𝑓 (𝑋 )) = [𝑝 𝑓 (𝑋 ), . . . ×𝑤]. This duplication-oriented
spline can be thought of as constructing a step function interval with length𝑤 and value 𝑝 𝑓 (𝑋 ).
Specifically, the default spline computes a step function where each interval captures a pooled

value that covers 𝑤 time steps. In doing so, we map from a lower dimensional summary to an

approximation of the input series of a certain coarseness. With an increasingly smaller𝑤 , the step

approximation of 𝑋 improves proportionally to𝑤 itself.

4.1.3 Residual Vectors. The spline function returns an approximation of the original time series.

Let 𝑅𝑋 = 𝑋 − 𝑠𝑤 (𝑝 𝑓 (𝑋 )) be the residual vector representing the error of the spline function with

respect to the original vector. The key insight of our work is that residual vectors are generally

more compressible than the original time series. It is clearly true that 𝑋 = 𝑅𝑋 + 𝑠𝑤 (𝑝 𝑓 (𝑋 )), and we

2
We slightly abuse the notation and use 𝑋 as either the input time series with size𝑇 , or any time series with size 𝑛.
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Fig. 2. The main algorithmic workflow. Compression flows from left to right and top to bottom just like
reading text. Decompression flows from bottom to top and inverts residualization with a summation.

can plug in this approximation into our recurrence equation of the previous section (Equation 3),

where approx(𝑅𝑖 ) = 𝑠𝑤 (𝑝 𝑓 (𝑅𝑖 )).

4.2 Algorithm Description
Themain idea is to run the procedure described above recursively in a hierarchical manner following

the recurrence described in Equation 3. For simplicity we consider that size of the time series is a

power of 2, so 𝑇 = 2
𝑘
. First, we check if the 𝐿∞ norm of vector 𝑋 is at most Y∗. If yes, then we can

stop the recursion setting the pool value to 0. Otherwise, we compute the pool value 𝑝 𝑓 (𝑋 ) over the
entire vector 𝑋 . As stated, we also apply quantization on 𝑝 𝑓 (𝑋 ). To simplify the notation and the

proposed procedure we use the same notation for the pool values and the quantized pool values
3
.

Then we set 𝑅𝑋 = 𝑋 − 𝑠𝑤 (𝑝 𝑓 (𝑋 )) as described above. In the next level of the recursion, we call the

same procedure twice: the first time with input 𝑋 ← 𝑅𝑋 [0, . . . ,𝑇 /2 − 1] and the second time with

input 𝑋 ← 𝑅𝑋 [𝑇 /2, . . . ,𝑇 − 1]. Let 𝑃𝑖 = [𝑝 (𝑖,0) , . . . , 𝑝 (𝑖,2𝑖−1) ], for 𝑖 = 0, . . . , 𝑘 , be the vector of the

pool values in the 𝑖-th level of the hierarchy sorted from left to right. Let 𝑃 =
⋃

𝑖=0,...,𝑘 𝑃𝑖 . We stop

the recursion when the error is at most Y∗ or after having |𝑋 | = 1. In other words, as we traverse

down the hierarchy, there is a successively more accurate approximation of the residual at each

level. After running this algorithm, the quantized pool values can be stored with any byte-encoding

format.

We describe the pseudocode in Algorithm 1 (for simplicity, we describe the pseudocode consid-

ering that 𝑃 is a global set of variables over the recursion) and provide a visual in Figure 2.

Intuitively, we can think of a binary tree structure where the original time series lies in the root

and its residual vector is split into two equal length sub-vectors creating two children in the tree

structure. In each node of the tree, we store the corresponding singular pool value. Let T be the

tree structure representing the hierarchical compression. For a node 𝑢 in T , let 𝑝𝑢 be the pool value

in this node. For example, if 𝑢 is the 𝑗-th node in the 𝑖-th level, we have 𝑝𝑢 = 𝑝 (𝑖, 𝑗 ) . Let also 𝑅𝑢 be

the residual vector that is found from our algorithm at node 𝑢.

We note that it is not necessary to start the hierarchical compression from the zero level—

considering the entire time series 𝑋 . Instead, we can start the hierarchical compression from

any level Γ, splitting the original time series into 2
Γ
parts, 𝑋 [0, . . . . ,𝑇 /2Γ − 1], 𝑋 [𝑇 /2Γ, . . . , 2 ·

𝑇 /2Γ − 1], . . . , 𝑋 [(2Γ − 1) ·𝑇 /2Γ, . . . ,𝑇 − 1] and run the Hierarchical algorithm for each of them

3
Otherwise, we can consider that any pool function applies quantization before it returns the final result.
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Algorithm 1: Hierarchical
Input :𝑋, 𝑖, 𝑗, Y∗
Output :𝑃

1 if | |𝑋 | |∞ ≤ Y∗ then
2 𝑝 (𝑖, 𝑗 ) = 0;

3 return;

4 𝑇 = |𝑋 |;
5 𝑝 (𝑖, 𝑗 ) = 𝑝 𝑓 (𝑋 );
6 𝑅𝑋 = 𝑋 − 𝑠𝑇

(
𝑝 𝑓 (𝑋 )

)
;

7 if 𝑇 > 1 then
8 Hierarchical(𝑅𝑋 [0, . . . ,𝑇 /2 − 1], 𝑖 + 1, 2 · 𝑗, Y∗);
9 Hierarchical(𝑅𝑋 [𝑇 /2, . . . ,𝑇 − 1], 𝑖 + 1, 2 · 𝑗 + 1, Y∗);

independently. In fact, we mostly run the hierarchical compression for the last 10 or 12 levels, i.e.,

we set Γ = 𝑘 − 10 or Γ = 𝑘 − 12 in our experiments.

Finally, we note that it is not necessary to keep the pool values in different variables 𝑝 (𝑖, 𝑗 )
or 𝑝𝑢 storing the indexes (𝑖, 𝑗) or 𝑢. We only use this notation to make the description of the

algorithm easier. Algorithm 1 can put all pool values in a single table 𝑃 following the ordering:

𝑃 [ℎ1] = 𝑝 (𝑖1, 𝑗1 ) , 𝑃 [ℎ2] = 𝑝 (𝑖2, 𝑗2 ) for ℎ1 < ℎ2 if and only if 𝑖1 < 𝑖2 or 𝑖1 = 𝑖2 and 𝑗1 < 𝑗2. When the

decompression algorithm needs to access 𝑝 (𝑖, 𝑗 ) , it corresponds to the element 𝑃 [2𝑖 + 𝑗 − 1], so we

have direct access in 𝑂 (1) time. Furthermore, as we will see in the next subsection, sometimes we

might need to have access to the pool value of the parent or the left (right) child of a node 𝑢. If

𝑢 corresponds to the 𝑗-th node in the 𝑖-th level then 𝑝 (𝑖−1, 𝑗 mod 2) , 𝑝 (𝑖+1,2· 𝑗 ) , 𝑝 (𝑖+1,2· 𝑗+1) is the pool
value of the parent, left child, and right child, respectively.

4.3 Decompression
Before we describe how we can decompress 𝑃 to derive an approximation with 𝐿∞ reconstruction of

𝑋 (lossy) or the exact 𝑋 (lossless) we show an interesting property of the residual vectors over the

nodes ofT . Let𝑢𝑖 be the 𝑗-th node of the 𝑖-th level in the hierarchy. Let𝑋 = 𝑋 [ 𝑗 ·𝑤, . . . , ( 𝑗+1) ·𝑤−1],
where𝑤 = 𝑇 /2𝑖 , be the corresponding part of the original time-series in node 𝑢𝑖 . Let 𝑢0 → . . .→ 𝑢𝑖
be the path from the root of T to𝑢𝑖 . From their definitions, 𝑅𝑢𝑖 = 𝑋 −∑ℓ≤𝑖 𝑠𝑤 (𝑝𝑢ℓ

). Hence, it follows
that maxℎ{|𝑅𝑢𝑖 [ℎ] |} = | |𝑋 −

∑
ℓ≤𝑖 𝑠𝑤 (𝑝𝑢ℓ

) | |∞, i.e., the 𝐿∞ error of the sum of the spline vectors from

the root node to the current node with respect to the original𝑋 vector, is the 𝐿∞ error of the residual

vector 𝑅𝑢𝑖 . We extend the previous observation to each level of T . For each level 𝑖 ≤ 𝑘 let 𝐸𝑖 be the

maximum 𝐿∞ error of all residual vectors found at level 𝑖 . Let 𝐸 =
⋃

𝑖≤𝑘 𝐸𝑖 . Our system compresses

both 𝑃, 𝐸 using any known compression method. If𝑀1, 𝑀2 are the compression methods used for

𝑃, 𝐸, respectively, the overall compression ratio of our method is
𝐻 (𝑀1 (𝑃 ) )+𝐻 (𝑀2 (𝐸 ) )

𝐻 (𝑋 ) , where again

𝐻 (·) denotes the size in bits.

Multiresolution Decompression. Let us see how the decompression algorithm works with our

running example. Recall that we have two different applications that require error thresholds of

Y = 1𝑒 − 4 and Y = 1𝑒 − 1 after retrieving data from an edge server. First, using HIRE, we construct

a compressed residual encoding with Y∗ = 1𝑒 − 4. Along with every retrieval request, a desired

error threshold is sent Y. The edge server first finds the maximum error 𝐸𝑚 such that 𝐸𝑚 ≤ Y. Then

we transfer all compressed pool values 𝑃𝑖 for 𝑖 ≤ 𝑚, from the edge server to the remote machine

that made the request. Finally, the decompression procedure runs on the remote machine, finding
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𝑋 ′ =
∑

𝑖≤𝑚 𝑠𝑇 /2𝑖 (𝑃𝑖 ), where the function 𝑠𝑇 /2𝑖 (𝑃𝑖 ) takes as input the vector 𝑃𝑖 and returns another

vector repeating every value of 𝑃𝑖 ,𝑇 /2𝑖 times. Using the observations above, we have the guarantee

that | |𝑋 − 𝑋 ′ | |∞ ≤ Y.

5 OPTIMIZATIONS
In this section we describe multiple algorithmic and implementation optimizations that improve

the running time of our algorithms. In the previous section 𝑘 = log𝑇 , i.e., the maximum height

of the tree in the compression algorithm. Recall that the execution of our compression algorithm

finishes when the 𝐿∞ error is at most Y∗, hence the final depth of the recursion (or height of the tree)

might be less than log𝑇 . We slightly abuse the notation and we use 𝑘 to denote the actual number

of levels of recursion (or the actual height of the tree) after finishing the compression algorithm.

5.1 Algorithmic Optimizations
5.1.1 Compression. We first note that Algorithm 1 runs in 𝑂 (𝑘𝑇 ) time. There are at most 𝑘 levels

of recursion and in each level we construct the residual vectors of all nodes. Hence, in each level

we spend 𝑂 (𝑇 ) time. We show how we can run Algorithm 1 in only linear, 𝑂 (𝑇 ) time.

The main observation is that we do not need to construct the residual vectors explicitly. These

vectors are helping to run the recursion algorithm and at the same time show what is the maximum

𝐿∞ error in each node. We claim that we can still run the same algorithm without constructing the

residual vectors. Let 𝑢 be the 𝑗-th node in the 𝑖-th level and let 𝑣0 → . . . → 𝑣𝑖−1 = 𝑣𝑖 = 𝑢 be the

path of the nodes from the root to node 𝑢. Let also 𝑋 = 𝑋 [ 𝑗 ·𝑤, . . . , ( 𝑗 + 1) ·𝑤 − 1], for𝑤 = 𝑇 /2𝑖 ,
be the subset of time series 𝑋 that corresponds to the part of node 𝑢. It is straightforward to see

that: 𝑝 (𝑖, 𝑗 ) = 𝑝𝑢 = 𝑓
(
𝑋 −∑𝑖−1

ℓ=0
𝑠𝑤 (𝑝𝑣ℓ )

)
. This is a very important observation because it shows that

by using only the original time series along with the previously computed pool values, we can get

the new pool value that we need to store and compress.

Next, we show an efficient way to compute 𝑓
(
𝑋 −∑𝑖−1

ℓ=0
𝑠𝑤 (𝑝𝑣ℓ )

)
. Of course, the actual algorithm

depends on the function 𝑓 . Hence, we check all of the main functions that we used. This method

can be extended to a large family of functions. For all functions we are using, we have the next

observation: it holds that either 𝑓
(
𝑋 −∑𝑖−1

ℓ=0
𝑠𝑤 (𝑝𝑣ℓ )

)
= 𝑓 (𝑋 ) −∑𝑖−1

ℓ=0
𝑝𝑣ℓ or 𝑓

(
𝑋 −∑𝑖−1

ℓ=0
𝑠𝑤 (𝑝𝑣ℓ )

)
=

𝑓 (𝑋 ). It is easy tomaintain (when needed) the term

∑𝑖−1

ℓ=0
𝑝𝑣ℓ during the execution of the compression

algorithm. Let 𝑆𝑣 be the sum of all pool values from the root to the node 𝑣 . We can update 𝑆𝑐ℎ𝑖𝑙𝑑 (𝑣) =
𝑆𝑣+𝑝𝑐ℎ𝑖𝑙𝑑 (𝑣) in constant time. Hence, we only focus on how to compute 𝑓 (𝑋 ) efficiently. In particular,

we aim to construct a data structure D in 𝑂 (𝑇 ) time such that given a query range [𝑎, 𝑏], compute

𝑓 (𝑋 [𝑎, . . . , 𝑏]) in 𝑂 (1) time.

We start considering the midrank function 𝑓 . We pre-process 𝑋 and we build a range MAX/MIN

data structure D using the LCA technique [17]. It is known that D can be computed in 𝑂 (𝑇 ) time,

it has 𝑂 (𝑇 ) space, and can answer a range MAX or MIN query in 𝑂 (1) time. Hence, we can run

Algorithm 1 in 𝑂 (𝑇 ) time.

Next, we consider the mean function 𝑓 . Again, we need a data structure to find the mean of𝑋 in a

query range. We compute and store the prefix sums of 𝑋 :D[ℎ] = ∑ℎ
𝑧=0

𝑋 [𝑧]. Overall, we construct
a data structureD in𝑂 (𝑇 ) time such that given a range [𝑎, 𝑏] we return 𝑓 (𝑋 [𝑎, 𝑏]) = D[𝑏 ]−D[𝑎−1]

𝑏−𝑎+1
in 𝑂 (1) time. Again, we run Algorithm 1 for the mean function in 𝑂 (𝑇 ) time.

It is straightforward how to get a random item in 𝑋 [𝑎, . . . , 𝑏] efficiently for the random function

𝑓 . We just get a random number 𝑡 ∈ [𝑎, 𝑏] and we return 𝑋 [𝑡]. So we can also run Algorithm 1 in

𝑂 (𝑇 ) time for the random function.

Next, we note that it is also straightforward to run the compression algorithm for the pool func-

tions with quantization. The only difference is that when we find the value of 𝑓
(
𝑋 −∑𝑖−1

ℓ=0
𝑠𝑤 (𝑝𝑣ℓ )

)
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we compute in 𝑂 (1) time the integer bucket it belongs to. Unfortunately, to the best of our knowl-

edge, there is not any known data structure to compute the median function in a query range in

𝑂 (1) time, using at most linear pre-processsing time.

Interestingly, the data structure we used for the midrank pool function is actually needed in all

pool functions to measure the 𝐿∞ error in each node/level in the hierarchy. Previously, having a

residual vector we could find the 𝐿∞ error by checking the absolute values of its elements. In the

optimum algorithm we do not construct explicitly the residual vectors, so we cannot do the same

procedure. Instead, we argue as before. From the definitions it follows that 𝑅𝑢 = 𝑋 −∑𝑖
ℓ=0

𝑠𝑤 (𝑝𝑣ℓ ).
Hence, 𝑒𝑢 = | |𝑅𝑢 | |∞ = maxℎ{|𝑋 [ℎ] − 𝑆𝑢 |} = max{|maxℎ{𝑋 [ℎ]} − 𝑆𝑢 |, |minℎ{𝑋 [ℎ]} − 𝑆𝑢 |}. As we
explained above, we can calculate 𝑆𝑢 (from the parent node) in 𝑂 (1) time. Using the same data

structure D we used for the midrank function [17], we can find the MAX and the MIN values of

the original time series 𝑋 in a query range in 𝑂 (1) time. Hence, we can compute the 𝐿∞ error in a

node 𝑢 of T in 𝑂 (1) time. The overall running time of Algorithm 1 for every pool function 𝑓 we

use (except the median), including the error calculation, is 𝑂 (𝑇 ).

5.1.2 Decompression. The decompression algorithm we described in the previous section runs in

𝑂 (𝑘𝑇 ) time, since we take the sum of the residual vectors to retrieve the original time series or

an approximation of it. We show how we can execute the decompression algorithm in only linear

𝑂 (𝑇 ) time. More specifically, the algorithm can be executed in time linear to the number of nodes

in the hierarchy that we need to retrieve to run the decompression procedure. While the algorithm

is more tedious to describe than the compression algorithm, it is independent of the pool function

𝑓 that we used in the compression phase.

For simplicity, assume that the decompression method needs to take the sum over all the pool

values (using spline interpolation) up to level 𝐿 ≤ 𝑘 . The algorithm can be extended in case that we

need to take the sum of vectors (starting) from different levels. We describe an algorithm doing

it without computing the spline interpolation vectors explicitly. The main idea is the following:

we run a sweep-line algorithm starting from left to right maintaining the total sum of all the

corresponding pool values in the hierarchy. For example, imagine that we are currently considering

an index ℎ ≤ 𝑇 in a node 𝑢 at level 𝐿. Let 𝑆ℎ be the total sum of the pool values from the root to 𝑢.

We observe that the decompressed value is 𝑋 ′ [ℎ] = 𝑆ℎ . Hence, the goal is to maintain the correct

values 𝑆ℎ over all indexes ℎ from left to right. In order to derive the value 𝑆ℎ from 𝑆ℎ−1, we subtract

the pool values that correspond to the nodes that index ℎ − 1 belongs to and add the pool values

that correspond to the nodes that index ℎ belongs to. The pseudocode can be seen in Algorithm 2.

The while condition on line 5 checks if there is a change in the pool values from index ℎ − 1 to ℎ at

level 𝑖 . Then variable 𝑗 stores the node at level 𝑖 that index ℎ belongs to. We update the value 𝑆ℎ
subtracting the pool value 𝑝 (𝑖, 𝑗−1) (i.e., pool value in ( 𝑗 − 1)-th node at level 𝑖) and adding the pool

value 𝑝 (𝑖, 𝑗 ) (i.e., pool value in 𝑗-th node at level 𝑖). We recall that the notation 𝑝 (𝑖, 𝑗 ) is only used to

simplify the description of the algorithm. We can always access the pool value in the 𝑗-th node at

the 𝑖-th level, taking the value 𝑃 [2𝑖 + 𝑗 − 1] in constant time. Algorithm 2 visits each compressed

value in 𝑃 two times, one to add it to the sum and one to subtract it from the sum. Hence, the

running time is 𝑂 (𝑇 ).

5.2 Implementation Optimizations
Moving now from theory to practice, here we highlight a few best practices for implementing a

scalable encoder-decoder pair—that is, a pair with a low latency and runtime memory footprint.

5.2.1 Compression. The first step in optimizing the encoder (Algorithm 1) is to convert the recursive

formulation to an iterative formulation—thereby avoiding the allocation of unnecessary stack space.

At each level, we apply the pool and spline operations in succession. A naive implementation of
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Algorithm 2: FastDecompression
Input :𝑃
Output :𝑋 ′

1 𝑆−1 = 0;

2 for ℎ = 0 to 𝑇 − 1 do
3 𝑖 = 𝐿;

4 𝑆ℎ = 𝑆ℎ−1;

5 while ℎ mod
𝑇
2
𝑖 == 0 AND 𝑖 ≥ 0 do

6 𝑗 = ℎ
𝑇 /2𝑖 ;

7 𝑆ℎ = 𝑆ℎ + 𝑝 (𝑖, 𝑗 ) − 𝑝 (𝑖, 𝑗−1) ;

8 𝑖 = 𝑖 − 1;

9 𝑋 ′ [ℎ] = 𝑆ℎ

10 return 𝑋 ′;

pooling might map the function of choice to each individual window. However, there is a large

amount of extra work in that we might perform an unnecessary memory allocation operation to

rearrange the array into windows of size 𝑛 and then redundantly compute𝑤 small sums—only to

eventually divide each sum by the exact same value. Instead, we can compute a prefix sum over the

entire input with a single optimized function call and then in constant time deposit each pooled

value into a pre-allocated array. This technique exploits the vectorization and instruction-level

parallelism present in conventional superscalar processors.

Now suppose that we have a multivariate time series 𝑌 ∈ R𝑇×𝑝 that consists of 𝑝 univariate

columns. We can apply the encoding algorithm to each column in parallel and thus achieve a

latency speed up. Further suppose that we have 𝑏 blocks in each univariate column. We can also

apply the encoding algorithm to individual blocks—or groups of blocks, for that matter—which

introduces a more granular form of parallelism.

5.2.2 Decompression. As an alternative approach to the linear time technique expressed in Al-

gorithm 2, we can also in principle exploit threaded parallelism within the decoder. The HIRE

decoding algorithm must calculate a linear combination over a large number of recomputed spline

arrays. This summation does not need to be done in a sequential order due to the fact that the

pooled values are already in memory. Visually, we can partition the hierarchy along the depth axis

of the tree such that each individual spline reconstruction and summation operation (Figure 2)

is assigned to a single thread. As a concrete example, if ten residual subtraction operations are

performed during encoding, ten addition operations must be performed during decoding. If we

have two cores available, then we can assign five operation pairs (reconstruction and summation)

to one thread and the remaining five to the other thread. We then perform a meta summation over

the vectors returned by each thread which therefore yields the reconstructed time series 𝑋 ′.

5.3 Extensions
We extend HIRE to work with other error functions, and we show how we can split a time series to

optimize the hierarchical compression algorithm. Furthermore, we show how our technique can be

optimized to handle smoother reconstruction errors. We only show the high level ideas and skip

the low level details.
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5.3.1 𝐿𝑝 error. Our compressionmethod can actually bound the error of any 𝐿𝑝 norm, extending the

previous results for the 𝐿∞ norm. For simplicity we focus on 𝐿1, and 𝐿2 norms. The main observation

is that the residual vector 𝑅𝑋 explicitly computed by Algorithm 1, or implicitly computed by the

optimized algorithm, contains the absolute differences from the original vector. Hence, we argue

that the 𝐿𝑝 error of a node 𝑢 is the 𝐿𝑝 norm of vector 𝑅𝑋 in node 𝑢. More specifically, in line 1 of

Algorithm 1, we check whether | |𝑋 | |∞ ≤ Y∗. For any 𝐿𝑝 norm we can use the condition | |𝑋 | |𝑝 ≤ Y∗

to check the 𝐿𝑝 error in the current node of the hierarchical compression. If we want to measure

the overall 𝐿𝑝 error of the compressed time series we take the sum of the errors over the nodes

within the same level. In particular, if𝑤1, . . . ,𝑤𝑛 are the 𝐿𝑝 errors of 𝑛 nodes at level ℎ, then the

overall 𝐿𝑝 error at level ℎ is defined as

(∑
𝑖≤𝑛𝑤

𝑝

𝑖

)
1/𝑝

. We can show that the optimum pool function

to minimize the 𝐿1 error is the median function, while the optimum pool function for the 𝐿2 error is

the mean function. The linear time optimized compression algorithm can be applied for the 𝐿2 error.

The 𝐿2 norm can be computed without constructing the residual vector explicitly by calculating

prefix sums for both the values of the original time series and their squared values. The mean

function can also be computed in constant time for each node as we described in Section 5.1.1. For

a general 𝐿𝑝 error function, the compression algorithm runs in 𝑂 (𝑘𝑇 ) time, as we had with the 𝐿∞
error (recall that 𝑘 is the number of levels in the hierarchical compression). Finally, we note that

the linear time optimized decompression algorithm is independent of the error function.

5.3.2 Optimum splitting. We also explore different ways to split a time series during the com-

pression algorithm. For example, using the midrank function for bounding the 𝐿∞ error, the best

option is to split the time series such that the maximum pairwise absolute difference of elements

in each sub-time series is minimized. Specifically, given a time series 𝑋 with 𝑛 elements we want

to find the element 𝑗 such that max{max𝑖≤ 𝑗 𝑋 [𝑖] − minℓ≤ 𝑗 𝑋 [ℓ],max𝑖> 𝑗 𝑋 [𝑖] − minℓ> 𝑗 𝑋 [ℓ]} is
minimized. In order not to define a different optimization problem for every error and pool func-

tion, we consider the following splitting function that can split a time series in any scenario:

split at the element 𝑗 such that the maximum squared error of the two sub-time series is mini-

mized. In particular, the maximum squared error of splitting a time series 𝑋 on 𝑗 is defined as

max{∑𝑖≤ 𝑗 (𝑋 [𝑖] −𝑋≤ 𝑗 )2,
∑

ℓ> 𝑗 (𝑋 [ℓ] −𝑋> 𝑗 )2}, where 𝑋≤ 𝑗 is the mean of 𝑋 [1], . . . , 𝑋 [ 𝑗] and 𝑋> 𝑗 is

the mean of𝑋 [ 𝑗 +1], . . . , 𝑋 [𝑛]. Intuitively, the maximum squared error captures how homogeneous

each sub-time series is. Ideally, we would like to create homogeneous time series so that by applying

a pool function we minimize its error. It is known that both functions, maximum difference and max

of squared errors, are increasing with respect to the number of elements in a time series. Hence, we

run a standard binary search on the elements of 𝑋 and for each element 𝑗 we evaluate the splitting

function on the ranges [1, .., 𝑗] and [ 𝑗 + 1, .., 𝑛] corresponding to the left and right side of the split,

respectively. By constructing a data structure in linear time during the pre-processing phase, we

can evaluate the squared error of a query range in 𝑂 (1) time. The binary search on a residual

vector of size 𝑛 takes 𝑂 (log𝑛) steps. Given an input time series of size 𝑇 , the overall compression

algorithm takes 𝑂 (𝑇 + 2
𝑘

log𝑇 ) = 𝑂 (𝑇 log𝑇 ) time. Finally, we note that while non-trivial splitting

functions can help to reduce the error faster, it should explicitly store the size of each sub-time

series in the hierarchical encoding.

5.3.3 Smoother reconstruction errors. One drawback of our solution is that we do not have any

control of the errors 𝐸 in each level of the hierarchy. Using the midrank function we know that

these errors are non-increasing, however there are only 𝑘 of them and they might not be smooth.

For example, as described earlier, given a reconstruction error Y, our method first finds the largest

error 𝐸𝑚 such that 𝐸𝑚 ≤ Y. Recall that 𝐸𝑚 is the maximum error at the 𝑚-th level of T . Then
by transferring the pool values stored in nodes with depth at most Y, we make sure that the
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reconstruction error is 𝐸𝑚 . However, 𝐸𝑚 might be much larger than Y. Here, we describe a few

ways to decompress in a larger variety of error thresholds without changing the main ideas of our

compression method. In particular, instead of defining the errors with respect to the levels of T we

define them with respect to the nodes of T .
Let 𝑒𝑢 = | |𝑅𝑢 | |∞ be the 𝐿∞ error in node 𝑢. Let 𝐸 = {𝑒𝑢 | 𝑢 ∈ T } contains all errors in each node

𝑢 of T . Given a reconstruction error threshold Y, we could traverse T to find the set of nodes𝑈Y

having the largest errors that are at most Y. Then we transfer only the compressed pool values of

all the ancestor nodes (along with𝑈Y )𝑈 ⊇ 𝑈Y . For the decompression method we compute the sum

of the spline functions of the pool values in𝑈 . It guarantees that the 𝐿∞ error is at most Y. While

this method works, it is very inefficient to store and compress all errors 𝑒𝑢 in 𝐸 because of the high

compression ratio. Ideally, we would like to keep the compression ratio as low as possible. Next,

we describe three different ways to do it.

Imagine that the error in a node 𝑒𝑢 is high and the it remains high in the next 𝑡 levels in the

subtree of 𝑢 as we run the hierarchical compression method. For instance, assume that the error is

always at least 𝛼 · 𝑒𝑢 for 𝛼 < 1 in the next 𝑡 levels. After the hierarchy visits the node 𝑢 at level

𝑖 , we can directly jump to the level 𝑖 + 𝑡 and continue the hierarchical approach, skipping all of

the intermediate levels in the subtree of 𝑢. The selection of the parameters 𝑡, 𝛼 depend on a given

compression ratio upper bound and the original errors 𝐸 in the nodes of T .
As we observe in the experiments, the compression ratio of our method is better than the overall

compression ratio of the other methods. Hence, we have the ability to store more errors in the

nodes and still improve on other techniques. However, we need to be strategic about the selection

of those nodes. Similar to what we had in the previous technique, if the error at node 𝑣 is not much

smaller than the error at its parent node 𝑢, i.e., 𝑒𝑣 ≥ 𝛼𝑒𝑢 , then we can skip 𝑒𝑣 from 𝐸. The real

parameter 𝛼 ≤ 1 can be selected based on a given compression ratio upper bound and the current

errors 𝐸.

Before our system transfers the pool values from the edge to the remote server, one idea is

to identify a set of nodes to transfer with error at most Y, without storing any error value, i.e.,

𝐸 = ∅. In order to do so, we should spend some time during the decompression phase on the edge

server to identify these nodes. The idea is the following: in the edge server, before we transfer

the compressed data, we run a bottom-up procedure on T finding the error in each node that we

visit until we find nodes with error greater than Y. Let 𝑈Y be these nodes and let 𝑈 ⊇ 𝑈Y be the

set 𝑈Y along with all of their ancestors. We send all of the pool values stored in 𝑈 to the remote

server. While this method increases the overall time to decompress the data, it has two significant

advantages. First, it has the lowest compression ratio, since we do not need to store any errors.

Second, the method is parallelizable, so it can be executed extremely fast on the edge server.

We did not implement these methods in the current experiments. In most of the datasets that we

used, the errors are quite smooth over the levels of T , so it was left to future work.

6 RELATEDWORK
There has been substantial work in lossy numerical compression. Beyond the earlier discussion

and the baselines used in our evaluation, there has been work in lossy compression for scientific

data [7, 28, 41]. Like our study, most of these techniques focus on spatio-temporal data, where

the data are organized on some continuous axis (such as space, time, or both). Example of such

techniques include SZ family of compression algorithms [13, 30, 48] and the ZFP algorithm [14].

These algorithms follow a familiar structure to those described in our work, and offer 𝐿∞ error

guarantees. They generally pre-process/transform the data, quantize it, and then apply a byte-level

encoding algorithm. We omit an extensive comparison because the problem settings are quite

different. Scientific data compression algorithms generally focus on maximizing compression for
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data at rest, and the applicability of these techniques in an online or mini-batch setting is more

limited. Furthermore, to the best our our knowledge, multiresolution extensions to these algorithms

have not been developed.

There has also been significant interest in multiresolution problems in adjacent areas. In ap-

proximate query processing, the DAQ project [37] uses a vertical layout of floating point bits to

construct incrementally more accurate query results with error guarantees. This approach does no

compression (i.e., it does not save on storage), but it does reduce the query latency for aggregate

queries. The MLWeaving project has a similar approach to achieve machine learning training

at different levels of precision [44]. Similarly, multiresolution trees have been widely applied in

approximate query processing where data are aggregated at hierarchy predicates [5, 29, 31]. Similar

“multiresolution” results for aggregate queries are seen in wavelet techniques for AQP [8], online

aggregation [20], and sketching [12]. This work inspires our approach in HIRE, but is unfortunately

only restricted to answering aggregate queries and not point-lookups. Wavelet techniques beyond

the scope of traditional linear algebra decompositions have also been explored for multiresolution

matrix compression [27].

Thus, we focus our study on a key set of baseline compression algorithms that: (1) can run

efficiently in the online setting with rapid incoming data, (2) provide 𝐿∞ error guarantees for point

queries, and (3) do not require dataset-specific modeling for compression. It is worth mentioning

recent data compression work that has been excluded from this study. The DeepSqueeze project [23]

uses an auto-encoder to learn a low dimensional set of features that can represent the original

dataset. In our experiments, we found that the “encoder” portion of the auto-encoder was very

large in size (often the same order of magnitude as the data), and since it is dataset-specific, it

has to be included in the compression ratio measurement. The encoder is required to compress

any new data that arrives. Similarly, we build a simplified version of Squish that works assuming

column-independence [18].

7 EXPERIMENTS
We conducted most of the main experiments on an Intel NUC with a dual-core 2.30 GHz i3-6100U

processor, 16GB RAM, and a 256GB SSD.
4
All implementations were done in Python 3.9. Our

technique, in addition to each baseline, was applied to 7 different multivariate time series data sets

from the UCI [15] repository. For HIRE and the relevant baselines, we use the Turbo Range Coder

to encode the final codes into bytes [38].

7.1 Datasets
Our data sets are from four different projects within the UCI repository and in each case we used

a subset of the entire data as described: Heterogeneity activity recognition data set [42], from

which we used four different data sets 53.3𝑀𝐵 each, phones accelerometer (PA), phones gyroscope

(PG), watch accelerometer (WA), watch gyroscope (WG); Sensors for home activity monitoring

(SHAM) data set [21] 46.2𝑀𝐵; Individual household electric power consumption data set (IHEPC)

29.4𝑀𝐵; Bitcoin heist ransomware address data set (BC) [1], 50.3𝑀𝐵. We removed all non-numerical

columns, since numerical values are the focus of our present research. We also removed missing

data when present. As mentioned earlier, we assume a mini-batch model for data arrival. Since

HIRE assumes mini-batches that are sized as powers of 2, we simply cut the different datasets to a

multiple of our block sizes. This modification does not change our experiments and is simply done

for consistency.

4
Buff failed on BC dataset. We ran LFZip on a comparable Macbook Pro with a 1.4 GHz quad-core i5 processor due to

incompatibility.
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7.2 Baselines
Our baselines feature both lossless and lossy techniques. For the lossless techniques, we simply

consider a single encoding of the data (i.e., it defaults to the “strict encoding” strategy described

before). Below is a brief description of each baseline:

• Identity Gzip (IdG): Lossless compression baseline; we apply Gzip to an array of numbers

represented as floating point values.

• Quantize (Q): We convert each floating point number to an integer according to a user-

defined error threshold, thereby saving exponent and mantissa bits (see 2.2.1 for more details).

The numbers are stored as integers with bitpacking. The compression ratio is proportional

to ⌈log
2

1/𝜖⌉ which captures the effect of the error threshold 𝜖 alone on the size of the

compressed representation.

• Quantize Gzip (QGZ): This method consists of a quantization step and Gzip as the down-

stream compressor.

• Quantize TRC (QTRC): This method consists of a quantization step and the Turbo Range

Coder (TRC) as the downstream compressor. TRC uses a Burrows–Wheeler transform (BWT)

[6] to rearrange blocks of values into runs of the same symbol (i.e., integer), and then applies

an arithmetic encoder [46] during the entropy encoding step.

• Sprintz (Spz): We apply quantization to map to integer time series. First, it predicts the

current sample based on the previous sample and encodes its difference (see 2.2.2 for more

details). Second, it bitpacks the errors and stores metadata to allow for unpacking. Third, it

uses run length encoding on blocks of all zero errors. Lastly, it Huffman encodes the headers

and payload [4].

• AdaptivePiecewiseConstant (APC) Piecewise approaches decompose a time series into

segments and use the segments to approximate the time series. Our version of the algorithm

adaptively sizes segments to enforce an error bound [9]. The downstream data are compressed

with GZip.

• Gorilla (Grl): This technique employs a scheme that consists of a bitwise XOR between

pairs of consecutive values. It then produces a lossless encoding for each pair based on the

number of leading or trailing zeros and the meaningful bits present [36]. The downstream

data are compressed with GZip.

• LFZip: This method employs a pipeline of causal prediction, quantization, and entropy coding.

It first uses a Normalized Least Mean Square filter to predict the next value in the sequence

based on the previous values. Subsequently, the difference between the prediction and the

actual value is obtained and quantized to a user-determined 𝐿∞ error. Finally, a version of

BWT is applied to the quantized data [10].

• Buff: This technique was designed to exploit bounded range and precision in floating point

sensor data. It eliminates less-significant bits by adjusting for a certain precision. It also

compresses the integer and mantissa bits independently [32].

7.3 Performance Overview
Table 5 from Subsection 7.6 exemplifies the main argument behind the benefits of using HIRE over

competing methods. We show the compression ratio of the compressed data at 10 different error

thresholds. The breakdown of compression ratio shows that at very low thresholds, we can always

choose an error threshold using HIRE that will yield a more compressed representation than the

competing methods. Hence, we need to encode the other methods at all possible error thresholds.

On the other hand, because of how our method is constructed, we only need to store the lowest
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threshold and we are still able to retrieve all of the intermediate thresholds by traversing the tree

structure until we reach the desired resolution.

Overall, we perform better than all of the competing methods when it comes to the combined com-
pression ratio of all resolutions considered. For the experiments that we performed, 10 different res-

olutions were chosen that are inside the scope of real world usage: Y∗ ∈ {0.15, 0.1, 0.075, 0.05, 0.025,

0.01, 0.0075, 0.005, 0.0025, 0.001}. A key factor motivating our choice of thresholds is that for Quan-

tize (Q) the combined compression ratio across the error thresholds adds up to approximately 1.0

regardless of the specific dataset. HIRE requires half of the space to store all of the resolutions

when compared to other baselines. Furthermore, the compression latency of HIRE is significantly

better than methods with low compression ratios, again due to the fact that we only need to run

the encoder once to produce multiple resolutions.

7.4 Compression Ratio
We evaluated the compression performance of each method on all seven datasets. The resulting

lossy compression ratios comprised of all of the resolutions are displayed in the bottom portion

of Table 1; the single encoding compression ratios for the lossless baselines are included in the

top portion of the table. The best methods for a single error threshold scenario are Quantize Turbo
Range Coder (QTRC) and Sprintz (Spz), but when summing up all of the different resolutions,

their performance is on average two times worse than HIRE. One exceptional case is the SHAM

data set, where the performance was really close to ours. On this specific dataset, the sample

coefficient of variation (CV) i.e., the standard deviation over the mean, is extremely low due to the

relative stability of the data. This impacts HIRE’s smoothness throughout the various levels, which

consequently results in a worse performance.

PA PG WG WA SHAM HIEPC BC

Grl 0.818 0.592 0.638 0.806 0.765 0.295 0.806

IdGZ 0.555 0.402 0.449 0.464 0.769 0.217 0.230

Buff 0.421 0.390 0.390 0.421 0.468 0.453 *

Q 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QGZ 0.526 0.415 0.351 0.431 0.172 0.436 0.175

QTRC 0.258 0.156 0.119 0.170 0.029 0.183 0.116

Spz 0.275 0.157 0.119 0.179 0.023 0.222 0.164

APC 1.844 1.004 0.986 1.093 0.207 0.551 0.296

LFZip 0.349 0.212 0.168 0.210 0.043 0.545 0.434

HIRE 0.116 0.085 0.070 0.085 0.021 0.091 0.061

Table 1. The compression ratios for the lossy baselines in the multiresolution setting compared to HIRE
(bottom). The single trivial resolution is reported for the lossless baselines (top). Some of the values are above
1 due to the multiresolution sum of different thresholds.

7.5 Compression and Decompression
The evaluation of compression latency includes the compression algorithm (counting entropy

coding) and writing the compressed data to disk. HIRE outperforms all of the lossy low compression

ratio baselines as displayed in Table 2.
5
Themain driver of HIRE’s significant performance advantage

5
We report the latencywithout bitpacking times.We found in our experiments that bitpacking introduced a latency bottleneck

that skewed some of the results in favor of HIRE. We removed bitpacking time from those baselines, inflating their results.
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is the fact that we require only a single call to our compression routine in order to produce multiple

resolutions. This directly contrasts with the lossy baseline methods, each of which compresses

the data once per error threshold to produce 10 separable encodings. In the case of the lossless

baselines, there is a single encoding at the trivial resolution 𝜖 = 0 reflecting one function call.

PA PG WG WA SHAM HIEPC BC

Grl 1.602 1.497 1.628 1.649 1.668 5.349 1.649

IdGZ 0.362 0.377 0.344 0.340 0.162 0.145 0.452

Buff 0.030 0.029 0.029 0.030 0.235 0.148 *

Q 0.056 0.051 0.066 0.056 0.102 0.073 0.120

QGZ 1.595 1.039 0.910 1.450 1.269 8.264 43.50

QTRC 7.617 7.423 6.930 7.221 29.72 20.99 33.07

Spz 7.125 7.465 7.241 7.150 55.52 35.30 63.12

APC 1.844 1.003 0.986 1.093 0.207 0.561 0.362

LFZip 6.509 5.880 5.854 6.175 78.78 37.58 54.36

HIRE 0.431 0.376 0.357 0.388 1.027 2.020 1.921

Table 2. Compression latency (s): sum of all resolutions (lossy) and single trivial resolution (lossless).

The evaluation of decompression latency includes reading the encoding from disk and the

decompression algorithm (counting entropy coding). When it comes to decompression latency, we

report the average value for all of the different resolutions in Table 3. HIRE performs about the

same or better than the lossy low compression ratio methods on the first four data sets. However,

HIRE is significantly outpaced by QTRC on the last three. Once again, this is likely due to the

characteristics of the datasets. Applying HIRE to the first four datasets generates very smooth

residuals, which allows for a shorter path of traversal along the tree until the desired resolution

is reached. On data sets with extreme CVs, the traversal may not terminate until very low levels,

which is overall detrimental to decompression latency. Gorilla performs considerably worse in this

scenario due to its complex recursive encoding where adjacent values are compared and bitwise

operations executed.
6

PA PG WG WA SHAM HIEPC BC

Grl 2148 1870 2118 2313 29753 8508 2313

IdGZ 0.08 0.07 0.07 0.08 0.48 0.22 0.34

Buff 0.02 0.02 0.02 0.02 0.17 0.12 *

Q 0.01 0.01 0.01 0.01 0.04 0.02 0.03

QGZ 0.01 0.01 0.01 0.01 0.05 0.02 0.04

QTRC 0.07 0.06 0.05 0.06 0.10 0.15 0.18

Spz 0.51 0.51 0.51 0.51 2.15 1.36 2.35

APC 0.18 0.10 0.10 0.11 0.02 0.06 0.04

LFZip 0.50 0.49 0.48 0.48 7.50 3.37 4.86

HIRE 0.07 0.06 0.06 0.07 0.19 0.40 0.23

Table 3. Decompression latency (s): average of all resolutions (lossy) and single trivial resolution (lossless).

6
We do note the caveat that the Python implementation that we used for Gorilla likely does not perform bitwise operations

efficiently which may explain some of the poor results for latency.
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7.6 Edge Retrieval Experiments
We ran an experiment that mirrors the example in Section 2. We simulated a retrieval task with

data (PA dataset) collected and stored on an NVIDIA Jetson Nano with an ARM64 processor (4

cores) and 4GB of RAM. In other words, data are stored on the edge device and are retrieved by

remote applications. We measure the end-to-end latency of this process for four multiresolution

encoding strategies: strict encoding, all encoding, lazy re-coding, and HIRE. We only report using a

standard lossless method (IdGZ) and the best competing lossy method (QTRC) as baselines. Results

across different baseline algorithms were highly similar and are available upon request.

The retrieval workload is simple. There are ten different resolution requirements. A retrieval

request is a request to the edge for one block of data (53.3MB) at one of those given resolutions. We

assume that choice is uniformly at random. We evaluate the multiresolution strategies with the

following metrics:

• Ingestion Latency (IL). The time needed to compress one block of new data (53.3MB).

• Transfer Size (TS). The average amount of data transferred from edge to remote per retrieval

request.

• Retrieval Overhead (RO). The average time needed beyond data transfer to decompress or

transcode per retrieval request.

• Local Storage (LS). The average amount of data stored per block locally.

Algorithm Scheme IL TS RO LS

QTRC Strictest 4.8s 3.8MB 0.3s 3.8MB

QTRC All 44.5s 1.3MB 0.2s 12.9MB

QTRC Lazy 4.8s 1.3MB 5.1s 3.8MB

GZip Lossless 0.9s 28MB 0.17s 28MB

HIRE Multiresolution 1.2s 2.0MB 0.18s 5.8MB

Table 4. This table compares different edge retrieval protocols on four metrics: ingestion latency, transfer size,
retrieval overhead, local storage. HIRE has a much lower latency in both ingestion and retrieval compared to
other lossy baselines, while improving on a lossless baseline by over 14x in terms of compression ratio.

The results for the compression and decompression latencies are displayed in Table 4. First, HIRE

is significantly faster than the best compression baseline in terms of both ingestion latency and

retrieval overhead. In fact, it only has a minor overhead over a lossless GZIP baseline. Second,

while HIRE does transfer more data than the lossy baseline in the “all” or “lazy” settings, it is still

competitive to them and is significantly smaller than the lossless compression (by 14x). We believe

that this is a tradeoff worth making. Edge devices are storage constrained, and HIRE allows for

a more efficient use of local storage. Next, network transfers are a major component in energy

usage, which HIRE directly addresses. In other words, we achieve similar latencies to a simple
lossless compression framework but can significantly lower the data footprint if the
downstream applications can tolerate inaccurate results.

7.6.1 Detailed Breakdown of Compression Ratios. For the sake of completeness, we include the

per-threshold compression ratios for HIRE. The results for the compression ratio are displayed in

Table 5. One key point worth reemphasizing is that we only need to store the encoding for the strictest
threshold in HIRE, which in this case is 0.1164 at 0.001 error, since we are able to reconstruct all of

the intermediate representations from that single encoding.
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(a) Compression ratio (b) Compression latency (c) Decompression latency

Fig. 3. Breakdown of performance at different block sizes

Thresholds 0.15 0.10 0.075 0.050 0.025 0.010 0.0075 0.005 0.0025 0.001

HIRE 0.008 0.009 0.011 0.014 0.023 0.038 0.045 0.057 0.082 0.116

IdGZ 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555

QTRC 0.005 0.006 0.007 0.009 0.014 0.025 0.029 0.036 0.051 0.076

Table 5. Compression ratio for different resolutions on an edge device

7.7 Micro-benchmarks
We ran several different experiments in order to understand our method’s most important hyperpa-

rameters: block size and start level. Additionally, we tested different pooling functions and their

effects on the relevant metrics. All experiments in this subsection were performed on the Phones

Accelerometer (PA) data set.

7.7.1 Block Size. A block represents a subset of the entire data set meant to be compressed. It allows

for an online/streaming application of the method, since one can wait until a pre-determined block

size is buffered before applying HIRE. However, it also affects the performance of the algorithm.

We evaluate two different scenarios in which we vary the block size: with and without adjusting

the starting level.

We notice in Figure 3a that as we increase the block size, the compression ratio increases. This

behavior can be attributed to two distinct reasons. First, the larger the block size, the greater

the range of values within each block. This phenomenon could possibly impact the variance of

the residuals at each level, leading to less redundancy for the downstream compressor to exploit.

Second, the presence of outliers can be mitigated at smaller block sizes, since their impact will be

contained to a smaller subset of the data. Starting at a lower level in the tree structure also reduces

the amount of data being stored, which leads to a positive impact on the compression ratio at each

block size.

On the other hand, the increase in block size has a positive effect on compression latency,

especially when going from a very small block (512 time steps) to 8192 as we see in Figure 3b. After

that, the compression latency plateaus on the adjusted level scenario and slightly increases on

the regular one. We attribute this fact to hardware limitations that impede further scalability due

to the fixed number of CPU cores. Finally, when analyzing the decompression latency shown in

Figure 3c, we can clearly see that once again it decreases with the block size until it reaches a min

value at roughly the same point as in compression—8192. This observation is also due to hardware

constraints. The level-adjusted scenario performs significantly better than the regular one while

being less affected by the hardware constraints.
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Fig. 4. Compression ratio for different starting levels Fig. 5. 𝐿∞, 𝐿1, 𝐿2 errors for 6 levels

7.7.2 Starting level. The starting level corresponds to the initial number of segments into which

we break the original time series 𝑋 and apply the pooling function; or equivalently, the initial

number of nodes at level Γ of the binary tree T . That is, we do not need to start the recursion at the

first level, or even at the first few levels for that matter. Concretely, there is often little to no value

in pooling large segments, particularly when the block size is purportedly large. We can therefore

adjust the starting level in order to improve both compression ratio and latency, albeit we lose the

resolutions that correspond to the levels that are skipped. Such a trade-off is important in certain

cases, as we may want to maintain a sufficient number of levels to allow for a specific number of

resolutions. Figure 4 shows that as we increase the starting level, the compression ratio decreases.

Furthermore, the inverse relationship observed here is exponential in nature, since the number of

values stored after pooling increases exponentially—specifically by a factor of 2—until we reach the

upper bound of 𝑇 values at the leaf nodes of the hierarchy.

7.7.3 Pooling function. The pooling function plays an important role in how the data are summa-

rized and consequently the resulting residuals. We described its role in detail in Section 4.1.1. In

Figure 6a, we display the compression ratios at various error thresholds for the three pooling func-

tions: mean, median, and midrank. In Figures 6b and 6c respectively, we compare the compression

and decompression latency achieved by the three pooling functions. The compression latency of

the mean is markedly lower at all of the thresholds we tested. The decompression latencies are

consistent at smaller error thresholds but diverge at larger error thresholds.

7.8 Additional Experiments
In this section we run HIRE considering i) different error functions, and ii) a different splitting

method. First, we implement Algorithm 1 using the mean pool function and measure the 𝐿1 and

𝐿2 errors for each level of the compression tree, as described in Section 5.3. In particular, we run

HIRE on the first 1024 samples from the first column of IHEPC and measure the 𝐿∞, 𝐿1, and 𝐿2

error in the last 6 levels of the compression tree. The results are displayed in Figure 5. Note that

the 𝐿1 and 𝐿2 errors are divided by the size of the time series to obtain an element-wise metric

(given in black), and the size of the bars are adjusted for scale. We observe that while HIRE was

designed to explicitly bound the 𝐿∞ error, the 𝐿1 and 𝐿2 errors are implicitly bounded. Furthermore,

the errors decrease in lockstep with one another as HIRE progresses to lower levels. Note that we

do not apply a distinct optimized pool function to each error. Instead, we run the traditional HIRE

and show that it can still decrease the 𝐿∞, 𝐿1, and 𝐿2 errors in low levels of the hierarchy.

Second, we implement a variation of HIRE that splits at the optimum location as described in

Section 5.3. We compare the compression ratio and the compression latency of optimal split HIRE

(OS) and midpoint split HIRE (MS). The experiment was run on a block of 4096 samples from the

first column of IHEPC. Both versions of HIRE start from the first level and have an error threshold
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(a) Compression ratio (b) Compression latency (c) Decompression latency

Fig. 6. Breakdown of performance for three different pooling functions

of 0.01. The results are displayed in Table 6. Midpoint split (MS) of HIRE has a smaller compression

ratio and lower compression latency than OS. While OS optimizes the split (minimize the maximum

squared error), there are two drawbacks that affect the results. First, OS needs to store twice as

many values as MS because it stores the size of each time series in the hierarchical encoding. This

increases the compression ratio. Second, OS needs additional time to find the optimal split with

respect to the minimum squared error as described in Section 5.3. On the other hand, MS can find

the splitting point in 𝑂 (1) time, so the compression latency is much lower for the MS method.

Ratio Latency (s)

OS 0.242 2.042

MS 0.083 0.012

Table 6. Compression ratio and compression latency (s) of OS and MS on a small block. The relative contribu-
tion to OS ratio is 0.114 for the optimum split pooled values alone and 0.146 for storing the sizes alone.

8 CONCLUSION
We presented HIRE, a novel system for multiresolution compression that uses hierarchical residual

encoding for time series data. We showed that strict, multiple, and lazy encoding suffer from a

high transfer cost, high compression ratio, or high retrieval overhead in edge storage and retrieval

applications. We proposed an efficient technique to handle multiresolution compression that

alleviates the limitations of the previous methods. Our experiments validate that our system

performs better than the baselines at multiresolution compression for edge computing applications.

HIRE can also be extended to the multidimensional case (e.g., image compression). As mentioned,

one simple way is to encode each column independently. A more involved and efficient way is to

extend our hierarchical method in order to natively support more dimensions. We leave the details

and the implementation of the multidimensional case to future work.
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